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ABSTRACT

Various methods for launching surface waves are reviewed, and the basic
design principles are outlined for different kinds of launchers.

The case of a slot in a dielectric-clad groundplane is analyzed in detail,
and experiments supporting the calculated results are reported. A way of com-
bining several slots for good launching efficiency is derived and a five-slot
launcher designed after this principle is described. Results from measurements
of radiation patterns and efficiency are reported; as well as from measurements
of radiation patterns from discontinuities on a surface waveguide excited by this
launcher in combination with a cylindrical parabolic reflector.

In particular, a launching efficiency of over 80 percent was achieved with
five slots, as compared to about 48 percent with one slot. Radiation patterns
due to abrupt changes in dielectric thickness were measured, and compared
with theoretical results for a corresponding change in surface reactance. The

agreement was good at least within the main lobe.



1 - INTRODUCTION

Theories about and techniques for surface wave launching have been treated
by a great number of authors. [.2.3]

The reasons for carrying out the work reported here were the following:

a) to develop a flush-mounted launcher, with small dimensions in terms

of wavelengths and good efficiency.

A flushmounted launcher would have application as a feed for surface wave
antennas in cases where good aerodynamic performance is imperative. Small
size is also important in antennas of this kind, and high efficiency is desired
for clean patterns and good noise performance.

b} to design an efficient launcher with low radiation in the direction at

which the main surface wave is set up.

Such a launcher is very desirable for work involving measurement of
radiation from inhomogeneities on surface waveguides, such as discontinuities
or gradual variations of the reactance (''modulations'') or other radiating struc-
tures coupled to the surface wave. Measuring the radiation patterns from such
inhomogeneities in the presence of a relatively strong feed radiation is next to
impossible, and this difficulty accounts to a large degree for the fact that very
few successful experiments of this type have been reported.

The report begins with a brief account of basic properties of various
classes of surface wave launchers, including a review of the basic problems in-
volved in their design. Based on this discussion, a design p_rinciple is gelected
that appears promising with respect to the requirements stated above; detailed

design formulas are worked out and results from tests of an experimental launcher
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are presented.

II - DIFFERENT APPROACHES TO SURFACEWAVE LAUNCHING.

a) Coordinate System

Before entering into a discussion on surface wave launching arrangements,
it is suitable to define the coordinate system which will be used throughout this
report. We assume that the guiding surface is the plane z = 0, and use the co-
ordinates shown in Figure 1. The plane z = 0, will also be referred to as

“horizontal, " and the z-axis as '‘vertical" in the following:

2
R =2zcos @ ‘ y
r =z sin 6
x=rcos¢
y=rsin¢

FIGURE 1 - COORDINATE SYSTEM

We also define the following propagation constants for the fields:

Yx = nx+ j/bx propagation constant in the x direction
)“Y = ny+ jﬁy propagation constant in the y direction

xz = u.z+j/bz propagation constant in the z direction



-3-

b) Characterization of Launchers

The accepted way of characterizing a surfacewave launcher is by the
spectrum of plane waves that form its primary field. i.e., the field that would
be emitted by the launcher if no guiding structure were present. and the launcher
was radiating into free space. The primary spectrum can be derived from the
free space radiation pattern of the launcher ,[41 or from the fields on some plane
surface that may be called the aperture plane. B' 4’5 In the latter case, the
spectrum is obtained by carrying out.a Fourier analysis of the aperture field.
This yields the spectrum for all angles.real as well as complex. [3] The far
field radiation pattern will only give information about real angles, but since
the spectrum is an analytic function it can be continued for complex angles.
(Readers not familiar with the concept of complex angles are referred to [3]. [4]
and f_ollowing paragraphks).

c) Types of Guiding Surfaces to be Considered

The discussion will here be limited to flat, homogereous guiding surfaces

supporting TM-type surface waves, and presenting a positive reactance to a ver-

[6]

metallic planes covered with a dielectric slab, [7] and “fakirs® beds. "“[8] For

tically incident field. Examples of such structures are corrugated surfaces,

all these surfaces, a plare surface wave traveling in the x-direction (no variation

. wt
in the y-direction) has three field components for z > 0: (Time factor ' is

assumed).
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-,50Xz -Jﬁox 1+X
H =H_ e
0
,&0 1+x%
(1) E s ——— H
z we y

x € y
where /'}0 = % = % ) )\0 being the free space wavelength; and X is the
0

reactance of the surface.

A surface wave of this kind can be interpreted as a plane wave propagating
in a direction given by a complex angle.

For a plane wave in two dimensions, propagating in the direction 0 = 00,
we have the phase factor:

-jbOR cos(O-Oo) + jwt
(2) F=e .

With the substitutions x =R sin &, z =R cos 0, (2) becomes

-jﬁo(z cos 00+x sin 00)+jwt
(3) F=e .

=X _
If 00 > _]01, we get

cos 0, =j sinh @

. - -
0 » and sin Oo-cosh 01 = ‘{1 + sinh ©

1 1



With the notation X = sinh 01, the phase factors of (1) and (3) become the same,
and the analogy is obvious.

Il - DIFFERENT KINDS OF LAUNCHERS

There are four main classes of launchers that may be used for exciting
waves of this kind:

1. horns or slots with their aperture in the plane x = 0

2. horns or slots with their aperture planes parallel to the plane z = 0

3. directional coupler feeds

4. short vertical monopoles or dipoles

A brief discussion of these classes of launchers will be given below. For
the cases 1 and 2, we assume a structure of infinite width in the y-direction, thus
restricting the problem to the dimensions x and z.

a) Apertures in the Plane x =0

Call the HY field in the aperture Ho(z). The primary spectrum is then

the Fourier transform of HO’ which can be written:
@

(4) Ho()@z) = \e 0(z) z .
0

It can be shown B] that the primary field in the quadrant z> 0, x> 0 can

be expressed as

1 ~
(5) Hy(x, 2) =5— H (8,18,
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where

The presence of the surface gives rise to reflections, and the total field is:

+o
-ipx -ip e iBz A
(6) ’Hy(x,z) =—21; g e *(e *+Q-e *° )Ho(ﬂz)dﬁz

-
where Q is a '"reflection coefficient, ' that is a function of ‘&z'
From (6) it is possible to calculate the radiation pattern and the surface

wave amplitude. We first rewrite the integrand of (6):

+co
. 5 -jilp x+ pz)
(7) Hy(x’ z) =—21ﬂ— g [HO(/bz) + Q('ﬁz)Ho(",&zHe * z s, -
-0

The expression in the bracket is now the resulting spectrum, and is proportional
to the radiation pattern, if A = ,éocos 0 is inserted.

The surface wave appears as a residue term from a pole in Q, located as

shown in Figure 2. A jﬂ”(ﬁz)‘ 'jaz

—fo ’ A "PC(/G:}

X
FOLE ST AX

FIGURE 2 - LOCATION OF THE POLE IN Q OF EQ(6)
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To illustrate the conditions for a typical case, let us assume a dielectric
clad metallic plane (dielectric constant e, thickness of dielectric =d), fed by a .
horn whose radiation pattern is symmetric around its peak at 0 =% . For this .

case we have on the real axis of Figure 2:

. e/&z- j/bz'tan,l’)z’d
(8) Q(-/éz) = e/@z+jﬂz'tanﬂz'd

where

(9) A - “{/%Z(e-nwézz .

On the imaginary axis of Figure 2 we have /bz = -jaz, and on this axis

we have

(10) al-B,) =

(11) A=A -0’

Q has a pole for a.z= ﬁox (definition of X!).
o/
In the real axis of Figure 2 we can obviously expand HO('ez) in a Taylor
series in the vicinity of ,@z = 0, and because of the symmetry assumed we

obtain
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2
~ ~ ~
2z
= - " —
(12) H(/6,) = H(0) - H "(0) 52 toous
0
~
In the imaginary axis, Ho(oz) becomes
2
¢13) T (@)= (0)+T no)—s +
o(uz)- 0() 0() 2 e
0

~ ~
The narrower the pattern of the horn is, the larger HO"(O)/HO(O), but before
we can draw any more definite conclusions, we have to evaluate the complete
spectrum function around ﬁz = 0.

On the real axis of Figure 2 we get

Zeﬂ 2

Z
Sip)= 4t j,@z'tan/gz'd

z
).
2
)60

(14) (H,(0) - H"(0)

On the imaginary axis, we have

2
-2e¢a
z

- [] ]
2 /oz tan/@z d

~ [+
(15) S(a ) — (H0(0)+HO"(0)-—Z-E).

z
Figure 3 shows the normalized radiation patterns, given by S(,&z)- sin 0
for two cases. In both cases d = )\0/10 and € =2.5. The solid curve repre-
~ r~
sents the case HO(O) > > HO"(O), which corresponds to a small horn with a wide
o~
primary pattern, and the dotted curve is the pattern for HO(O) =0.1 ?{O“(O)

corresponding to a 3db beamwidth of about 30° in the primary pattern of the
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launcher.
For the assumed values of ¢ and d we have X =0, 41, and the residue

at the pole is

2¢f X H_(0) H "(0)
€ . n
(16) Res = - 0 0 (1+ :O—-—-— XZ).
(e+1)(1+_f_3_<ﬁz_) H,(0)
e-1-X

The residue is 2,7 times larger when ﬁo"90) =10 - ,;IO(O) compared to
~ ~

the case HO“(O)< < HO(O); and the difference in radiation patterns (Figure 3)
also tends to increase the launching efficiency. From this example, we can
conclude that the more directive the primary pattern is, the better the effici-
ency for this type of launcher. However, it is also apparent that the muin
radiation from the feed is concentrated in a lobe close to the direction 0 = w/2.
This makes the launcher less suitable for measurements of radiation patterns
from discontinuities or other radiating structures located on the surface in
front of the launcher. To achieve high efficiency for other applications, the
aperture of the horn will have to be large, and this is undesirable when good
aerodynamic properties are necessary.

It is theoretically possible to create an aperture distribution Ho(z),
that for good efficiency will give a low value of ?‘io(/éz) in the region
-A0< Ibz< ,50, and a high value at the surface wave pole.

However, if we assume a spectrum function ,I\-IIO(/@Z) and calculate
Ho(z) from the inversion of (4) we generally arrive at a HO( z ) that is not

zero for z < 0, which is required by the physical situation. In the case of
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a dielectric slab over a ground plane, one also has to deal with sources within

the dielectric. [9] The situation is thus very complicated, but this alone should
of course not rule out further work in this direction. The main reason for aban-
doning the vertical apertures for practical applications is that for reasonably good
aerodynamic properties, the aperture will have to be small, say in the order of
one wavelength or less. What the synthesis procedure touched on above really
means under such circumstances is to create an antenna with high supergain ratio
and small dimensions. This always results in severe problems in realizing the
desired aperture distribution, as well as poor bandwidth performance.

b) Apertures in the Plane z = 0

To illustrate this case, let us consider a ground plane at z = -d, covered
by a dielectric slab of thickness d, and relative dielectric constant e.
The E field in the aperture (located at z = -d) is assumed to have only an

x component Eo(x) and we define:

~n
(17) Eo(ﬂ x) = e Eo(x)dx.
-
Above the dielectric, the Hy-ﬁdd turns out to be (for proof see following

chapter).

+oo
-j(,@xx +,@zz)
d

1
(18) H (xo2) =5 | Eo(e,1a (A)e 8

where
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Ayc

1 =
(19) Q e/@zcosxl,'zd - jﬂ“zsixy&'zd

(20 Azz iﬁoz-'gxz

and

(21) B, =Y-@(2)e -sz = {/éoz(e—l)ﬁézz .

2
Q has poles for A =+ ,60 1+X~ (Figure 4) giving surface waves in
both positive and negative x-direction. The radiation pattern F(0) can be

written:
(22) F(0) = cos 0 E (4 = B,sin 0) Q(A= 48 sin 0).

The endfire direction here corresponds to /éx =ﬂ0, and for pure end-
fire radiators the relationship between primary pattern and efficiency is simi-~
lar to that for the vertical aperture. The design of supergain structures is,
however, simpler in this case, since one can work directly with the spectrum

~
function E .
ion E (£ )
~
Assuming some suitable shape for Eo will, of course, lead to an infinte

aperture also here. but we are now free to include negative x and truncate the
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aperture function on both sides of x= 0 in points where it has a low value,

A few examples will be carried out to illustrate this.

] -Jew

POLE Ar,s,-,eo\/ /7 POLE AT By=B\ 14X
+ ‘\—7 f)éx

raY $

=" Ao

FIGURE 4 - LOCATION OF POLES IN Q OF EQ(19)

~
1. One suitable form for EO()éx) would obviously be a narrow pulse-type
spectrum with its peak at one of the poles, giving a swface wave in one di-

rection only (Figure 5).

508 |

-~ +> —= .-4641

_/60 A

FIGURE 5 - PULSE-SHAPED SPECTRUM

Y

Such a function could be approximated by:
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sin A(,@x-ﬁo 1+X2 )

(- 41 P )

(23) E\(8,)

where A is a constant that can be varied to give the pulse the desired
height and width. Eo(x) is now given by the inverse of (17):
+o

_ 1 ~ -j/bxx
(24) Eo(x) =% Eo(,@x) e d/bx

and one obtains:

-A<x<A

1 -j/boxl 1 +X2

Eo(x) = e
(25)

Eo(x)=0 |x|>A .

This means a traveling wave with the same phase-~elocity as the surface-
wave, and the length of the aperture is 2A.
The spectrum-function given by (23) is known to have a “main lobe"
. [1a] . .
and "sidelobes. " To determine the order of magnitude of A for reasonably

good efficiency, let us assume that the first null is located at ,6x = ,50, so that

only the "“sidelobes'' contribute to the radiation fields. This gives:

2A 1

(26) 22 . :
)\0 i1+x -1
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Figure 6 shows aperture length versus X, derived from (26). For
low X-values, the length of the aperture becomes very large, and there
are some additional problems with this type of launcher that will be des-
cribed in more detail in connection with directional coupler feeds.
Before taking another example, it should be pointed out that the re-
sult above can be obtained from well-known results in filter theory. The
"Fourier pair (17), (24) suggests such an analogy, and we can interpret
'EO(/@x)as a time function, and Eo(x) as the transfer function of a filter.
The reverse is also possible, but since our aperture functions are complex
it is more convenient to interpret Eo(x) as the transfer function. (23) is then
clearly the pulse response from a filter with constant al;nplitude response in
the passband, 2A and a linear phase characteristic.
2. In the previous example, we have really introduced rather severe limi-
tations on AE/O(ﬂx). For Ipxl > /@0 [ 1+ XZ, the value of 'Eowx) is non-
critical, and the spectrum shown in Figure 7 would also be acceptable.
If we assume that the step is located at /éx = '&a’ such that

2 .
,60 </6a <,40 | 1+X" , and that the shape for /4x >,6a is that of an exponen-

tial function, we can write:

+oo

-b(A -£) -ipx 48

_1 x7 a X X

(27) Eo(x) =5 e e ,63
Ba

This assumption will lead to an infinitely large aperture, but as will be shown

later, it is relatively easy to estimate the effect of a truncation of the aperture
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FIGURE 7 - STEP-SHAPED SPECTRUM

to a finite length. From (27) we obtain:

(28) E,(x) = 1 e

2w bY 1 +x%/b°

- x + tan'l(x/bn

The aperture field is here basically a traveling wave with varying

amplitude but has an extra phase retardation in the cénter {close to x = 0).

Figure 8 shows magnitude and phase of Eo(x) for the case ,é»ab =1. The fact
that the magnitude of Eo(x) decreases for increasing |x| indicates that some
finite aperture with this distribution would givé a good result. It may be reason-
able to try a truncation at x/b =+ 10, where the magnitucie of Eo(x) is about
20db down from the peak at x = 0. The choice of the parameter 'éa will then
determine the length of the aperture in terms of wavelengths. If the aperture

length is 2A, we get:
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FIGURE 8 - AMPLITUDE AND PHASE OF APERTURE FIELD

FOR OBTAINING THE SPECTRUM IN FIGURE 7
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2A 10 A
(29) S— =5 AP - <38b.

0 '6a

The aperture length is thus roughly proportional to Aab. but when making this

parameter small, one encounters another practical limitation. The propagation
1
A,b

this means a very slow wave, and in addition a fast variation in phase velocity near

constant of the aperture field in the center is ﬁa(l + ) and for small Aab

x=0. Some compromise has to be made between aperture length and the rate of
phase velocity variation.

The effect of finite aperture size can be easily determined for A/b > 10.

We get:
+A .
i8-8 Jx
(30) E.(8.) l_ e "
30 E = - .
0 /7x Zﬂ/@a b+ jx
-A
For x> A, we can write:
, e-J(/éa—Ax)x
(31) E (x)~ - .
0 Zﬂﬂa jx

Using this approximation, the spectrum for )ex < '6a (normalized to the
value at the peak when A —> o) can be written?

Si(A(S - 4))

~ 1
(32) E0(’6x <'éa)nor:m Sz w *




—— R W

-Zo-

This expression is independent of b} as long as A > 10b. Figure 9 shows
a plot of (32) and the effect of finite aperture size is exactly what one can expect
from the filter analogy. The "'rise time" is inversely proportional to the "bandwidth"
and from this follows that for small X, ,éa will have to be close to )du. A large value
on A will then be required to prevent the flank of the spectrum from falling within
the region )éx < )50.

Like in the previous example, the arrangement arrived at above sug-
gests a '"'directional coupler'" type launcher, but with varying "coupling® and chang-
ing phase velocity in the "“driving" transmission line.

These aspects will be discussed in connection with directional coupler feeds;
but it is already obvious that using continuous distributions with traveling wave
characteristics may lead to problems with rapidly changing phase-velocities. I
individually fed discrete sources were used, it would be somewhat easier to control
phase and amplitude of the aperture function. Returning to the time-frequency
analogy, this would correspond to passing a time-function through a filter with
several narrow passbands some distance apart (frequency sampling). Such a
process is known to result in a time-function at the output of the filter that closely
approximates the input function in a time interval whose length is inversely propor-
tional to the spacing of the passbands. Translating this into our "“language" tells
us that it should be possible to approximate the desired spectrum function Eowx)
in the region ~,50 < )éx < /60 using point sources along the aperture with a certain
maximum spacing.

To be more specific. assume that we have arrived at a desirable continuous

¥ within the limits of the approximation (31)
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aperture field given by:
(33) E (x) = Glx)e V%)

Assume further that G(-x)= G(x), and 0(-x) = - Q(x); which is always true when

~/
Eo(,bx) is real for real /Ox. The spectrum is then:

o)
(34) E (8)=2 \ Glx)cos(4 x - p(x))dx.
0
If the aperture is made up of point sources at x=0, +x.,+x_.... +x__,
ibix ) SXpIXp o I¥N
with voltages Vn = G(xn)e , the spectrum becomes:
N
~ \
(35) EO( ﬁx) = 1{1__0G(xn)cos(/éxxn- Q(xn)) .

For x = nd, where d is a constant length, (35) has the form of a Fourier series,
and provided §(nd) = n@o, where QO is a constant phase-angle, the series will have
only cosine terms. This suggests that EO()éx) has a periodic behavior. If now a
periodic spectrum-function is selected, and its Fourier series is calculated, the
location of the slots, as well as the proper excitation voltages (both phase and mag-
nitude) are immediately given.

This seems to be by far the simplest way of designing a launcher of this type,

and is in essence the method used for the launcher to be described in this report.
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c) Vertical Monopoles or Dipoles

A vertical dipole at some height above the guiding surface, or a mono-
pole on the surface will launch a surface wave. DZ] The situation is very simi-
lar to that of a vertical aperture, but cylindrical coordinates have to be used for
describing the problem completely. The current distribution along the conductor
will determine the spectrum, and very little can be done to shape the spectrum from
one shart dipole. In this respect a single dipole or monopole has the same draw-
backs as a low-silhouette vertical aperture. On the other hand, if several ele-
ments are distributed over the surface, one has the same possibilities to design
for suitable "“group spectra" (c.f. ‘'group pattern" in array theory) in the same
way as can be done with the slots in the ground-plane treated in the previous
paragraph.

d) Directional Coupler Type Launchers

The two examples of launchers with horizontal aperture described above
both have aperture fields with traveling wave characteristics. This immediately
suggests an open transmission line as the basic element in the launcher. The
aperture is then in a sense the coupling region in a directional coupler, between
the feeding line and the surface waveguide. This is at least a convenient way
of treating the problem of setting up the desired aperture field.

The directional coupler approach has been used for launcher design[l:ﬂ,
and for a detailed analysis, this report should be consulted. The analysis is based

upon even and odd coupled modes in the coupling region, and several conditions

have to be fulfilled simultaneously to allow 100 percent power transfer between
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the two waveguides. The design problems may, in a practical case, be more
or less severe, but the dual viewpoint of directional coupling and aperture field
and spectrum is certainly the most convenient one to apply in the design of tra-
veling wave type launchers.

From the previous discussion it can be deduced that a horizontal aper-
ture made up of discrete sources should offer many advantages. In the following
such a launcher will be described and analyzed, and results from tests of an
experimental launcher will be presented. The design principles are in essence
those already described, but the formulas have to be modified to include a third
dimension and put into a form permitting numerical calculations.

First, formulas will be derived for radiation and surface-wave fields
excited by a single slot in an infinite ground plane covered by a dielectric slab.
The results will then be used to determine a suitable distribution of slots and
their proper excitation for obtaining high launching efficiency.

IV. SINGLE SLOT IN A GRIUND PLANE COVERED BY A DIELECTRIC SLAB

a) Solution of the Boundary Value Problem

The arrangement considered in this chapter is shown in Figure 10. In

the slot (z = -d) we assume the E-field to be:

w
E -EOCOSETY

(36)

In all other parts of the plane z = ~d, we have Ex= Ey= 0, and this plane can be

considered as the aperture. Next the aperture field is transformed to a spectrum
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function by means of a two-dimensional Fourier integral:
+co

WA x+ B y)
* Y dax dy.

v
(37) Exo(/&x: AY) = Ex(x; VA 'd)e
-0
The spectrum function represents a set of plane waves, and for each

pair /6x, /3y one has a wave in a direction represented by the angles 11 and
0, given by

)éx = ﬂosm 6 cos §
(38)

’éy = ,éusin 0 sin ¢

We also.. define

(39) p= ﬁosin Q= 1/5x2+,syz
and

(40) /bz = I,&OZ- p2 = ,60cos 0.

If the dielectric were not present, the Ex field for z = -d would be

(4]

given by
+
1 ~ -j(,éxx‘f /3yy +,5zz)
{41) Ex(x, y,2z)= ? Exo(/:}x, /éy)e d/ﬂxd,éy.
-
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Now the dielectric is present, and a boundary value problem must be
solved. This is done in the following three steps:

1. Each elementary wave (given by a pair ﬁx, ,éy) is split up into one "TE wave"
characterized by Ez= 0, and one "TM wave' with Hz= 0. Together these two
waves represent the most general combination giving a certain Ex at z = -d,
with E =0, (4

y

2. The boundary conditions in z = 0 are introduced for each such wave, and ad-
ditional fields are introduced to fulfill these conditions.

3. The resulting elementary waves are summed up, using an integral similar
to (41) which gives the total field.

During this process we will be working with 'field components" that are
really "spectrum' or 'transform' functions. To stress this fact, the transform
signs ~~ will be retained throughout the calculations.

The splitting into "TM" and "TE" waves is illustrated in Figures 1l and
12. The two waves are characterized by their "'transverse' components ’Et
and r;lt, transverse in the sense that they are perpendicular to the direction of

propagation. The direction of rﬁt and /Et is into the paper in Figures 11, 12.

From the conditions in the plane z = -d, we get:

~ A~
s
Eth,,éy)- 5 Exo(/éx,/ﬁy)

(42) "
i Ax 0 ~
ZoHyl B Ay = WE"OVQX'AY)'
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Since the surface is isotropic, we can solve the boundary value problems
~s s
for Ht and Et for any ¢ , and this can be done as follows:

For the TE waves we assume in the region z > 0:
~ “HAxYA Y +Az2)
(43) E' =A e 4
t 1
and for -d<z<90

-iP (z+d) -ilB x + A y)
(44) E" = Eze z +A3sin,@'z(z + d]e x Y

where

2 2 2
(45) /yz:{/;o"/éx"éy '
Comparing (44) and (42), we have:

. P g
(46) A AZ =E t(z = -d) = - P xo(ﬁx) ﬁy).
n/ ~/
At z = 0 the boundary conditions are that both Et and albz(Et)
are continuous. This gives, after elimination of A 3
A

(47) A =- §x0 !
P cos/&'zd + j(&z/b'zXeinA 'zd
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The second term of (44) represents reflectiors in the boundary between
air and dielectric. Since this added field is zero at the ground plane, the bound-
ary conditions there are satisfied.

For ﬁt' we do not know the total field at the groundplane, only the part

~
associated with Ex , as given by (42). By treating this part as a "driving" pri-

0

/\/ ~
mary field, and adding a reflection term that gives no additional Ex or Ey at
z = -d, we can arrive at the correct field.

For z > 0, we assume:
- +
~ J(/bxx +ﬂyy /bzz)

vt =
(48) H ¢ Mle

and for the region 0 > z > -d the assumption is

~ -j/8 '(z+d)
(49) H" = I;/I e Z +M cosﬂ‘z-d:lle

-8 x +/3yy)
t |2 3 '

o~ /gx AO'\/—( Ne >
(42a) M:2 = Ht(z =-d)= —p— Tz'_ Zo Exo(/gx, ﬁy)

The boundary conditions at z =0 are

LA

~ - 8 ~ .
' = [ LI —— =
Ht Ht ’ 9z Ht
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After elimination of M_ between (48) and (49), and introduction of (42a) one

3
obtains
n
A AE
(50) M = 22 0 sz 1
P A % cosﬁ‘zdi-jw'z/eﬂz)sir}&'zd

The fields for z > 0 are then given by

+oo
1 - xHA yHA 2)
(51) Et(X; Y z) =E Al(/sx, Ay)e d/gdiY
-
+co
-8, %t /5 v+ b 2)
(52) H,(x,y,2) == S Y3 T A VEY
4w .
- Q0

b) Radiation Fields

The radiation fields can be obtained from (51) and (52) using saddle

point integration. The result is

-if R

J 0 e
E" = TAIW’ 0)cos @———

R
E
Hy =7Q
(53) 0
. -4 R
_ J/$0 e JAO
H0 = —Zu_.le’ O)cos @ R

The calculations leading from (51), (52) to (53) are collected in Appendix I.
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For power calculations, we also need an expression for the Poynting

vector in the far field. We have

0 1
(54) S-= 3 > cos OL—Z——- +ZOM1M1J

where ¥ denotes complex conjugates.

c) Surface Wave Fields

As is described in Appendix I, the surface wave fields can be obtained
from the residues in the poles of Al and Ml' In the general case, both these
functions will have poles, but if /@Od'\/ €-1 <% ) M1 will have only one pole,

and A1 has none. [9] The p -value at the pole can be written p =ﬂo l 1+ XZ )
where X is obtained from equation (Al8) in Appendix II. Using (50) and (A13),
we can write the H¢) component of the surface wave field
- ‘ >
{“/g N1+x2  -AXz - jB,r] 14X
Y

14
(55) Hy = — o) | T e
4w

. [ 2 N
lim 5 L(P ‘/@0 1+X )MI(P, ¢ll .
p—>£o 1+X

The expression (55) can now be compared with (Al5) of Appendix II,
to establish the correct value of K. The "power density" in the surface wave

(i. e. the power contained in an angular interval A" of unit measure) is then
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obtained from (Al6). By integrating the surface wave power and the radiated
power as obtained from (54), the efficiency of one slot is readily determined.
In next section, the efficiency will be calculated for a specific case, as well
as the distribution of radiation fields and surface wave.

V. RADIATION AND SURFACE WAVE FIELDS FROM ONE SLOT

a) Radiation Fields

The following numerical values on the various parameters will be used:

Mg =1.20 inch 2f =0.54 inch
(56) w=2w* 9.83 109 rad/sec. 2w =1/16 inch
€ =2.30 d=1/8 inch

First, the radiation pattern will be computed, using the formulas derived in

Appendix I.
We observe, that for |p|< 2,60, pw < 0.1, so that the factor

sin{pw cos ﬂ/(pw cos ¢) in (A3)is % 1 for all p-values of interest. With this

approximation, A1 and M1 become:

cos[%% sin @ sin ﬂ
0

57) A = - 16E  wf sin §
! v E—(%)Zsinzg sinzﬂ [cosT+ Jcos 9 sin7]
0 'Je-sin )

4f
cos[‘—'-—-sin 0 sin ﬂ
16E0w£ 2%, cos b

(58) M, =
! " E-(i—l)zsinZO sinzﬂ _[cos'r cos O+ j( le -sin O/Q)Bin'r_-]
0]
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where:

T = ,godl € - sinZO

The power pattern can now be obtained from (54).
For convenience in later computations, we normalize the pattern so

that the variable part is unity for © = 0. This gives:

s. SO cosz[% :f sin 9 - sin 1)] coszo- sinZQ)(l - 5;—1 sinz'r
rR® [i- A2 sin%e. sin?§]% | 1. —2=1
S .-
0 € - sin @

(59)

2 e-1 2
cos ‘)(l -~ sin 'ro)

+
1 €-1 € cosZO - sinZO .2 J

-3 > sin T
€ cos 0

where Ty ,Aod\/_e » and

2
4
_ 64 2 2,2 70 1
(60) So=~T Eg vl 3 -1 2
L 4 0 (1 -——sin 7)
€ 0
The total power radiated is:
w/2 2w
(61) P = SR%si o df de
rad in .
0 0

This integral has been evaluated numerically with the result:
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(59) shows the effect of the dielectric on the radiation pattern. For
example if T —0, (or € -»1), the patternfor 0= 0 is independent of 0 as
it. should be. With the dielectric. a null occurs for 9 =w/2 at all Q values.
Figure 13 shows the pattern for ') =0, as given by (59).

b) Surface Wave Fields

Equation (Al7) of Appendix II gives for the parameters assumed above
X =0.392. According to (Al3), (A3), the H{) field of the surface wave is for

Z >0 and ﬂor>>¢l:

16E0 l cos |1+X sin @] ﬂAO{H'XZ

—(cos ‘)}@

Hy =(1+]j)
b, r

wz, [ - G5 7 (1 + x%)sin’d]
Mo

{u - "(1+x ) 2mj

o .uh>li 1+X —£——_—s1n[ﬁ dm Y-:COS[:& dY:_u—]jJ
onz -jﬁorm

Performing the limiting process resu’ts in
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FIGURE 13-E9 FOR ¢=0 WITH d=1/8" ¢ #2.3, X0=1.20"

ODEGREES
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2neX[1 + (e41)X7] cos[A d] e-1-x° ]
| 1ax? et pax [iner %] ]

(63) lim[] =-

The power density in the wave can be written:

Ss , cosz %‘:\L 1+X2 sin 4)]
(64) Ss =TL!. cos 4: 0
[i- ( ) (1+x )sin ﬂ

The surface wave pattern is shown in Figure 14.
The total power in the surface wave is then:
2n
(65) P_= S Ssd{) .
0
For the assurmed parameters, one obtains Ps= 2.90 Ss , and the

0
efficiency is then given by

P
g 1
(66) =% +p ° S - °
rad "s  [14 0 682
s
%0

A comparison between (62), (63), and (Al4) results in a value for K

that can be inserted into (Al6) in order to obtain S . The result is

2 2
B TeXD Hetl )X ,A d
67) s =24 E .28 Yl ! ][ - ]
8 XD"‘(

0« ° z Le+,AdX(l+(e+l)X) H)x%]
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Insertion of appropriate numbers in (60) and (67) gives SO= 1.04 SSO, and from
(66) one obtains /)= 0.525.

The efficiency of one slot plays a vital part in the following, since it is
used for relative calibration of surface wave and radiation field pr‘obes used to

determine efficiency for a 5 slot launcher,

VI. COMBINATION OF SLOTS FOR HIGH EFFICIENCY

~ On a two-dimensional guiding surface one can use an argument similar
to that of ""group spectra' used earlier for one-dimensional guides.
If we assume that an array of slots of finite length is placed along the
x-axis, the transform function of the array can be written:

~ = “iAx
(68) F(A: A)= Fslot(ﬁx%y’;“ne *

where /E\:slot is the transform for one slot with unit excitation, An is the
(complex) amplitude of the nth slot, and /Qx =ﬁusin 1] cosﬁ. The notation %{a
and the word "array factor" will be used for the series in (68).

Next, assume that the array factor has the shape of a '""square wave'" as
shown in Figure 15. To find the qualitative effect on the radiation pattern that
this array factor would give, we recall that the pattern in a direction (¢,9) in
space is proportional to ,F\"(/@x=ﬁosin 0 cos §, Ay=ﬂusin 0 sin §). Also, the sur-
face wave amplitude in a direction { is proportional to F[/éx=/90ﬁ+_xzcos 0.

A, = 1 14" sin §].

Figure 16 shows the ’éx-’ey plane with shaded areas representing Fa= 2.
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The inner circle is the boundary for radiation (real 8), and the dotted circle
represents the pole at p = ’&Om . It is obvious that this ga will suppress
the radiation completely, and the surface wave will be confined to a rather nar-
row angular region around 0 = 0.

Using the two numbers a and b shown in Figure 15 to fix the position

and period of the square-wave, AF/ gets the form:
a

:u’él\/lg

n \
-1) cosEZnﬂ)I;Ax 0 = a-b]]

~ _ é .
(69) Fawx) =1-3 (atb) = 2 atb? | *

The relative amplitude and phase of the slots, as well as their location
is shown in Figure 17 (a =1, b=1.25 is assumed). A comparison with Figure 8
illustrates the close relationship between the continuous distribution fér a step-
type spectrum and this slot arrangement. The sloté can clearly be looked upon
as sampling points for the continuous function.

In a practical launcher, one has to use a finite number of slots, and
this will have the same effect on the spectrum as a low-pass filter on a square-

ad
wave. (hce the number of slots is determined, the shape of Fa is given, and

a, b can be chosen to suit various conditions on surface wave and radiation fields.

This process is best described by an example.

Assume that 5 slots are to be used, and that X = 0, 39 as before. We
want to suppress the surface wave for negative x (§ =w), and place one null of
the spectrum function at Ax = -AO l l-l-X2 (Figure 18). This gives us the equa-

tion:

) Jre— PR—
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FIGURE 17 - AMPLITUDE AND PHASE DISTRIBUTION IN MULTISLOT

LAUNCHER

a=1.0, b=1.25(FIGURE 15)
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P
) SBoY 1x”

®x a-b
2(ath) - z(a+b)" 1.10.

(70)

One more condition is needed, and we could for instance assume a =1, which

makes b=1.43 and ’

/éx)\O w,a-b )\0
- = + U, .
2] " 2 ) T ATty s

(71)

The three middle slots will thus be about XO/4 apart, and the distance
between two of the outer slots is nearly XO/Z. The length of the array is less
than 1. 5)\0.

VII. DESIGN AND ADJUSTMENT OF 5-SLOT LAUNCHER

It was decided to build a 5-slot launcher using the design principles
described in the preceding section. In the final design b was chosen to 1.43,
and a was made 0.97. For a wavelength \ =1.20 inches, kO/Z(aib) is then
0.25 inch. Figure 18 shows the resulting spectrum function. The three slots
in the middle are then 0.25 inch apart, and regular X-band waveguide (RG52 or
WR90) cannot be used to feed these slots. Waveguides \;/ith inner dimensions"
.200 x . 900 inches("1/2 height X-band guide") were therefore used for all the
slots.

Phase-shifters of the dielectric-slab type were introduced in all the
feeding guides, except the guide feeding the middle slot.

The power division network is shown in Figure 19. To the two outer
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slots power is taken from the input guide via directional couplers. The re-
maining power is split up between the three middle guides in the way shown
in Figure 19. The power ratios were thus not variable, but designed to pro-
vide the correct power ratios if no coupling between the slots takes place.
This is, of course, not a realistic assumption, but on the other hand it is
extremely difficult to anticipate the coupling effects, and some assumptions
had to be made. In the first try we were alsc prepared to waste power if
necessary by introducing lossy devices in order to obtain the desired slot
fields (Figure 20). The important question is not the overall efficiency, but
the launching efficiency in terms of the relation between surface wave power
and radiation emitted by the launcher.

The slots were cut in a 1/16 inch thick aluminum plate with the dimen-
sions 6x4 inches The slot-width was 1/16 inch and length was adjusted to
present a good match to the feeding guide when covered by a polyethylene slab
of thickness 1/8 inch. This length was experimentally determined to 0. 54 inch
or 0.45)\0 for a VSWR < 1.2.

Grooves were cut 1/32 inch deep on the side of the plate facing the
feeding guides, mating their walls, in order to ensure good contact between
the walls and the plate, so as to prevent leakage between individual guides.

To make measurements on a single slot possible, a similar plate was
made with one slot. The groundplane was a circular aluminum plate, 1/8 inch
thick and 36 inches in diameter. In the center a rectangular hole was cut to

accept the slotted plates. Good contact between the circular and rectangular



-47-

(SLOTS IHL JO OM L SSO¥IDV AIAVI WTII

DNISH¥OSIV IO SJTULS FLON) YAHONAV'T LOTS AAIL - 02 FYNDII

TECHNICAL RESEARCH GROUP



-48-

1
| !
= W A IR B N S
- —FabTAVM IND UIMOd
- faprA
R
i e
: i e thim it wflhnls SOsb N SR ol G S AR t3d
: s vy ety s SED Gl S DG (i Sin S pbags I . . :
i RS “F-—4 1 ot S wadls SR SR SR U S HDAS S
R o PR d St L o D IECESESERE =8 B0 I N S
e M G LR e s Wﬂ i fﬁ\ R gt : - :
— — = S Bt N DS S i HEES FEEE EEU SO0 S A S
N T -+- —: N N R R Mﬂ [ R Bl . : : :
N S SRl SR S s R i A O A
B : A sy Gy SRR I T - onid]
) N . . fee : - : : o
e : : H
: B i : ” :
DA i . A :
0 N g = ] | a N
Z 5 b e g,
2 5] T ~ . ol ) = 2
2@ : P vl SRS SRS St " L85
§u HE SRR B IS ) Enel IE55 LN SULE e : m 3
]l Bl I
o M L. —— . S pe .- >
z b R A R R T Y oz :
< 2 [ _ ST S - . z e .
8o 3 ' : ] SR U guni . Sz L _
By e — [Py . @ fon '
m 2 T a1 1 S i ; 2 : gy
: : N o i M A B - . . N « B
{ 548 S - . I : S : 3 m 5 . 2
o a 1o 3 g 3
SR &5 - 1 - - LR O N 3 g [=3~1
d e 4t @ - — — P ety Qe - i S Seug NN O SE" ad
§&u 251 - O R e s e e e N I 35 GE .
. ~ ME . N \\s - - - T N HAU. N A\Itlnv.lll» . . mm <
: - bs o ‘o to - - - g
.. “ T =F B 4 INBESEEEEEL NP N N 3 it
F : ‘ Dl B o B A : 5 2
i ‘ 2 B . - T N K - P . - 4 . 3
: i g - } = : :
: : : . , i : :
: - B [ ERS B SRR S HEE : 2
" - — L 1. : Tt ,
S SRS SEEE SR SN 1 T RTe ST e S G G : c\l 1 .
| . [N SRt GERANS gy .- N I S z . i i, . : . .
. M : = P P S &1 R : . ‘ ‘ : ;
T - . Fo N — L N . i =1 N : : : : " .
: : S o R : Wlﬁ <4 Y z N M 1 - Lo e S R N : - SN R
2 R e = = =55 B S N I S A T B D S e N :
T . : T : ; = [ I = . . LI B ol
SR e S DRI BT S D Nl s 0= ML O (U o S5 Bk s s TSI
- ! 0 S g e I8 SRR SNRENN (RRSS Mo SO SR G 11 4 11+ . » _
D o P S i e el S . ot —~ = T 1 0 1- - - o = |
- . 3 B bt w\ - - I N - ,_ 4 T e A & ® 9 R > 2 ~ - ©
EIREE; 17 ¢ EJEARETR IR A8 I8 R0 W0 S5 S8 SR a1 AWM uTo zwzol 31y 138 , u .
by S LRI SO S G SR IR T e - biAVM NG
ER N NS i {apAvm u*zOH M;Oa EVIIT Rt TR SR * SR IO NREE Sb e o n
18 IR O JAPAVM \C

ANGLE



-49.

plates was ensured by covering the gap between them with aluminum foil.

To measure radiation patterns. a probe arm was erected. permitting
the measurement of E‘) or ES as a function of @ for any §. A synchro
was attached to the probe arm to permit use of a pattern recorder. The
same arrangement was used to measure surface wave distribution as a function
of §.

The probe was an open-ended WR90 waveguide that could be turned
to accept the desired polarization and the distance probe-launcher was about
11 inches. The setup.inciuding a parabolic reflector and with the ground-plane
extended for the experiments described in Sect:on IX, is shown in Figure 24.

Adjustment of the launcher had to be made in two steps. First the two
outer slots were covered with aluminum foi! and the pattern for the three
middle slots was taken for § = 0 {(Figure 2i). A direct way of measuring
relative phase and amplitude in the siots would have been preferable. How-
ever. such a method is very hard to conceive, since the measurements have
to be made with the dielectriz slab in piace and without disturbing the coupling
between the slots.

The desired pattorn had been computed in advance, using the previously
presented theory The phase shifters were adjusted for closest agreement be-
tween theoretical and measured patterns. but at first the agreement was rather

poor. By calculating and plotting the spectrum from the measured pattern it

was found that this was due to higher fields in the side slots than desired. Small

strips of lossy film were placed across the ends of these slots, and after a few

— R S
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changes the desired pattern was cbtained.

Next step was to remove the foil from the outer slots and vary their
phase shifters until the desired pattern was achieved. This was not pursued to
the point of exact agreement. Adjustments were made up to a point where the
pattern at all & had approximately the correct level. and the surface wave for
4) =w was brought down more than 15 db below the value at Q = 0. Theoretical
and measured patterns for three and five slots are shown in Figures 21 and 22.
Surface wave distribution for five slots is shown in Figure 23.

The VSWR of the complete launche was less than 1.4.

ViII. EXPERIMENTAL DETERMINATION OF LAUNCHING EFFICIENCY

FOR 5-SLOT LAUNCHER

The radiation pattern and the surface wave distribution were measured
with the setup described in the previous section. To determine the efficiency
from these measurements, it was necessary to calibrate the probe. To be more
specific. the power received by the probe when placed in the radiation field is
proportional to the power density {watts per unit solid angle), but in the sur-
face wave field the power received by the probe will be proportional to the power
content in the surface wave per unit interval n 1) To interpret the measured
data from the 5-slot launcher the relative meaning of the radiation field and
surface wave field readings must be known. 1f one can make the corresponding
measurements on a launcher with known ratio between the two kinds of power
(e.g a launcher with known leunching efficiency) this relationship can be estab-
lished. A single slot is in our case a convenient reference and radiation as

well as surface wave patterns were measured for both a single slot
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and for the 5-slot launcher, with the output from a directional coupler
sampling the input power as reference. For the single slot, patterns were
also taken without the dielectric cover. The single slot patterns were com-
pared to those computed from theoretical expressions, and the agreement

was found to be good (see Figure 25 for example). Writing the power radiated

*
without dielectric:

w/2 2w
(72) P = g g S, F(e $)sin 0 df de
0 0

and that radiated when the dielectric is present:

w/2 2w
(73) P, = g S, ,G(8, ¢)sin 0 d¢ do
0 o0

we obtain by numerical integration of the theoretical expressions:

(74) P =8 - 3, 89

(75) P2 :SZO - 2.516 .

Since the measured patterns agree very well with those derived from

"

theory, (74) and {75) can be considered correct. If now SIO and SZo are meas-

ured for the same incident power. the surface wave power with dielectric is

— evn van me emm eme e emm eEn e e eme ML M SEa e edm R R Sue e G G ame G T e

zations, and F(0 =0)=G(0=0)=1
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Pl- PZ' and the launching efficiency for one slot is given by

P -P S,
(76) Ny =—5—% =1- 52> 0.646
1 10
conversely, (76) gives
S 1.
(77) 5= 6;2(13
10 ’

Inserting the previously computed value 'Zl = 0.525 in (77) makes
SZO =0.725 Sl()' In other words, theory predicts that SZU should be about

1.3 db below Slu' The results of the measurements show a S, . value only

, 20
0.5 db below Sl()‘ This difference of 0.8 db is partially due to the fact that

the slot was severely mismatched when the dielectric was removed

{VSWR = 6.5). A slide-screw tuner was used to cancel the reflections, and
some extra loss was introduced this way. The waveguide attenuation between
the slot and the tuner was about 0.1 - 0.2 db, and the increase in attenuation
due to extra losses in this section is about twice this value when the VSWR is
6.5 before tuning. However, this leaves 0 2- 0.5 db unaccounted for, and

it is hard to tell what caused this discrepancy between theory and experiment.
Some loss in the tuning screw itself can be expected, but not quite of this mag-
nitude. An accumulative error in the numerical integration could be the ex-
planation, as well as deviations in X, € or d from the assumed values.

If we accept the measured values of S1 and SZO’ including corrections

U
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for extra tuning loss of 0.4 db* the efficiency of the one slot launcher is:
1,2 0.475.
The surface wave power can be written:

2w

sw

(78) P = g S, 8(0)db

0

where g(0)=1. Numerical integration of {78) gives

(79) P =8 -2.896
sw

sw

and we have

Psw 1

(80) 1 = Prp_ 5,
W L +5= 0.870

sw

- . _ - ' - 1 . :

For Ql 0.475, (80) gives st 0.78 SZO' or in terms of logarithmic
measure, S is about 1 db below S, .

sSwW 20

When the probe was set to measure the peak of the surface wave pattern,
the indicator showed a reading 9.2 db higher than that obtained at the peak of
the radiation pattern. This meane that the readings of surface wave power
should be decreased 10.2 db in order to be comparabie to the radiation levels
in the sense indicated by {77) and (78).

For the 5-slot launcher, the radiation patterns for both polarizations

and the surface wave distribution were again measured, and in terms of two

at least
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new reference power densities SZ‘o and S‘sw numerical pattern integrations

were performed with the results:

1 =8 - 1.73
(81) Pra,d SZO !

(82) PSW = Ss'w - 0.940.

The indicator readings of the reference levels differed 17.5 db,
with the surface wave level higher than the radiation field reading. Accord-
ing to the previous calibration, 10.2 db should be subtracted from this value
for obtaining the ratio between S;w and S'20 , which gives S'20 =0,186 - s'sw'
The efficiency of the 5-slot launcher is then ’ls =(1. 186)-1 = 0, 84.

The accuracy of this value is naturally not very good, because of the
great number of measurements and numerical integrations performed. How-
ever, great care has been taken in each step of the procedure, and it should
be safe to assume that the actual efficiency lies in the immediate vicinity of
0.8 or higher.

This may not seem extremely high, but in view of the low reactance
(<0.4) and the small size of the launcher (1. ZSXO . 0.45X0) this result must
be considered as good. Of major importance is also that the conceived design
method has been proved feasible at least for laboratory use, and it is undoubted-

ly possible to increase the efficiency by adding more slots. As will be des-

cribed in the next section, the designed launcher has already been used for



—

-58-

measuring the pattern of radiation from step-type changes in the thickness of
the dielectric and other radiating discontinuities with good results.

IX. EXPERIMENTS PERFORMED WITH THE 5-SLOT LAUNCHER

Radiation and surface wave patterns, as well as efficiency, do not in
themselves form a very convenient basis for judging the usefulncss of a launcher.
Until actual experiments have been performed to demonstrate the capability of
the launcher in a specific application, this investigation would not be complete.
As has been pointed out before in this report, one of the major applications
for a launcher of this type is its use in connection with pattern measurements
on radiating elements placed on a surface waveguide. The main problem here
is to avoid interference between the element radiation and radiation from the
launcher. The lé.tter can be due to either radiation direct from the feed or
to room reflections and to prevent both, a high efficiency is desirable. Since
the radiation is mainly concentrated in the direction of maximum surface wave
intensity for all endfiretype launcherse the requirements on efficiency become
very strict. To circumvent this difficulty and in order to obtain a collimated
surface wave “"beam" simulating a one~dimensional structure, the arrangement
shown in Figure 24 was used. The reflector is a parabolic cylinder with 12
inches focal length. and its height and position was chosen so that the surface
wave is reflected with good efficiency, but very little radiation is intercepted
by the reflector due to the null in the radiation pattern for 0 =w/2.

The ground plane was extended in the direction of the reflected surface

wave "beam". and provisions were made for a radiation probe to be moved on
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a circle with 11 inches radius and with its center located on the surface 30 inches
away from the feed. The pattern of a line discontinuity placed across the guide
at this point can then be measured in a plane parallel to the direction of surface
wave propagation. The setup is shown in Figure 24 except that the probe here is
mounted for taking patterns of the launcher. The supports for the probe arm used
for taking patterns of discontinuities can be seen near the edge of the extended
ground plane.

Two kinds of discontinuities were investigated: (1) abrupt changes in the
thickness of the dielectric (from 1/8 inch to 1/4 inch, and from 1/8 inch to zero)
and (2) metallic rods of different cross-sections. Figure 21 shows the pattern
obtained without discontinuity, Figures 27 to 36 show the patterns measured for
the various discontinuities.

In Figures 27 and 28 curves marked theory have been superimposed on
the measured patterns. These curves have been computed from [l‘ﬂ where the
pattern from an abrupt change of reactance X from XO to X1 is derived. Chang-
ing the notation for polar angle to conform with that used in this report, the
theoretical power pattern expression reads:

ZO
(83) S(0) = cos

2 2
(X,-X,) 11+x0 '
wkr
( 1+X12 - s8in Q) 1+X0z - sinO)(on+ cosZO)

XO is in our case 0.392. For d=1/4inch X1 becomes 0.758, and when

the dielectric is terminated X,= 0 should be used in (83). From Figures 27 and 28

1

it can be seen that (83) gives the correct difference in level between
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the peaks of the two patterns, and that the theory agrees well with the measure-
ments for 0> 60°. However, the measured radiation patterns decrease faster
for ©< 60° than the theory predicts. This indicates that the radiation near
endfire from step discontinuities on dielectric-clad surfaces can be accurately
obtained with the theory put forward in [14] . The discrepancy for angles near
broadside is an example of the known fact that a dielectric clad ground plane

in certain respects does not behave as a surface with constant normal impedance.

The experiments reported here are of course only a small fraction of
those that could be performed using the launcher. The capabilities of the

launcher for this type of measurement has however been convincingly demonstrated.

—
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APPENDIX I

Evaluation of the Integrals (51) and (52)

In order to keep (x,y,z) -space and (ﬁx,/éy,,éz)-space separate, we

introduce the following notations in (51) and (52):

/6x=pcosCP x=r cos §
(A1) /’Jy=psin(P y=r sin §
Az= ﬁocos & z=R cos 0
p=/§osin9' r =R sin 0

(51) and (52) then both take the following form:
T 1 V5
1 -j cos{¢P- 0
(A2)  fx.y z)=—5 gFl‘P’ | | F,(p.0)eP" ARPTIE p dp
4w
0 (Po

where ), is an arbitrary angle.
]

The inner integrals will first be carried out under the assumption that

pr > > 1.
We have
x 2/ .
~o sin(pw cos §) 2/ 4 cos(3 x D30 (P)
(A3) ExO - 2WEO W COS w 2L 2
P (P Il -(Tp sin (P) I

We observe that ExO is an even function of both (() and p. For the two

integrals, F2 is:

(51) F =-sincj>ﬁx
(A4)
(52) F. =
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We also observe that a change of ? . with +® has exactly the same
effect on the integrands as changing the sign of p. We can therefore write:
+oo (pa'ht —l s ,-——-—/%Z-pz
1 -jpr cos(f/- d
(A5) f(x,y,z) = ~—= F.(p)] \F (p,@)e P © 0)d(])le P ap
2 1 l 2
4n J
w9

Next, a new variable is introduced: ¢= ¢1 +j ¢Z =? - ¢ and we have

¢0= %- $. The exponent in the integrand then becomes:

(A6) -jpr cos(q)-‘l) = - pr sin Vlsinhyz- jpr cos ¢1cosh%2 .

The case p> 0, r >0 will be treated first, and for this case the
real part of (A6) is negative in the shaded areas of the V—-plane, shown in
Figure Al.

If the integration path is augmented as shown in Figure Al, the value
of the integral (51) will not change since sin? = sin(¥+ $) = 0 along the added
portions. The same is true for (52}, if VO has the values shown in Figure Al,

Figure A2 shows the contour in the ¢= plane for which the imaginary
part of the exponent (A6) is constant and equals -jpr. The real part of (A6)
is either negative or zero {at ;é: 0). Since the integration path of Figure Al
has its endpoints in the shaded areas of the V -plane. it can be deformed into
the path of constant phase close to y = 0 (if pr > > 1) without noticeable change
in the value of the integral. Contributions to this value are only obtained close

to =0, where the path is a straight line (Vl = VZ) and if Fz(p,"[ + 0) varies
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FIGURE Al - INTEGRATION PATH FOR (51) AND (52)

(51) sin ¢o=sin(&0+u)=o if &0=-¢£oro<on

Zo=t-¢for1r<‘)<21r

(52) cos ¢0=cos(%o+1r)=0 if V0=-%-0for-%<¢<%

_X Moo
Zo—z-ofor 2<‘)<Z



-A4-

p
+ J9r
//
K /
»
/
S VA
-J s g '
y,
//
Ry
h
+ i

FIGURE A2 - CONSTANT-PHASE CURVE FOR (51), (52)
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slowly in this region, we can write:

?+1T
y . oy

(A7) F,(0.ple P* °°S¢d¢zF2(@,p)e'Jpr s e ¢ (14)a¥,
¢0 -

= F, . ple P V()

In the case p< 0, r > U, one has to select a different path of
integration, and the saddle-point is then located at ;[=1r. The result
differs from (A7) by a change of sign for pr, and to include negative
p in (A7) we have to exchange p with its magnitude Ipl in the square

root. Negative r can also be included by writing (A7)

-jpr L] .
(A8) sz,p)e Im (14) .

Introducing (A8) into (A5) gives

+00
14i {—u— -j(Pmlﬁoz"’Pz)
(A9) f(x,y,z)=—;§- FeIF, . P p dp .
-00

In the discussion of (A9) p will be regarded as a complex variable.
p =0 is neither a branch-point nor a pole, but Fl(p) may contain two or

* 2 2
more poles, and p=# ,50 are branch-points. For the function ,60 -P

we choose the branch that is real and positive for p-values on the real
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axis between -)60 and *'/@O, and is negative imaginary for all other real
values of p. The poles will appear in symmetrical pairs on the real p-axis,
in the intervals -ﬁo'\/_e <p <ﬁ0 and /50 <p< ,bok/_e. Figure A3 shows the
proper position of the branchcuts and the integration-path, and three pairs
of poles are shown in typical positions.

It is convenient to introduce polar coordinates in (A9), according

to (Al), and this gives:

pPTr = /AOR sin 0 sin &

(A10)
2. p% = AR cos 6 cos
z /@0- P -'/60 cos 6 cos 9.
From (Al0) follows, that the exponent in (A9) can be written:
(A11) - j/)OR cos(é - 9) .

Assuming @& to be complex (&= 6‘1+ j9'2) Figure A3 now transforms
to Figure A4. The integrand of (A9) has a saddlepoint at 01= 0, 0-2 =0, and
the constant-phase contour is of the same shape as the contour in Figure A2.
If we now deform the solid integration path of Figure A4 into the constant-
phase contour, and 0 < 9 << %/2, the contribution at the saddle-point will

be a good approximation to the integral, provided ﬁOR >> 1. This contri-

bution becomes:
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+o
2
(2 T . -ib R -4 RG;
fl(x,y,z) ~ -(-E'ZJ)—FI(/bUsin O)FZ(Q,/&Osin Q) wlﬁosm ol e O/ﬁocoso e 0 de.;_
4w IR sin OI
-00

(Al2)
. -. R
Ay . . e %y
cos GFI(/%SHI 9)F2(¢,/5051n O—x

The factor ﬁocos 8 comes from the differential: dp= d(,éosin 6= ﬂocosg‘dsf
and otherwise the operations performed are identical to (A7).

For 0-values close to w/2, however, the poles come close to the
integration path, and will give an appreciable contribution to the integral.
For 6 =u/2, the constant-phase contour follows the branchcut, and within
the approximations used, the integral along the cut is zero, since (Al2) con-
tains the factor cos 8. This makes it possible to close the original contour
in Figure A4 as shown in Figure A5. Now, the integral is given by the resi-

dues at the poles.

2
From a pole at p =/(50 | 14X“ , the contribution is

fz(x, y,z) = —lijz 2%wj lim [(p- .60 I 1+XZ)F1(P)]
2

4w
>
p—x)o X
(Al3)
2
I 2 -j/ﬁ |1+X r
2 nly ] WX 0
F?_(o,po 14X°) |_____r e

(Al3) shows all the characteristic features of a surface wave, and

its z-dependence just above z =0 must be:
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FIGURE A5 - CLOSED INTEGRATION PATH FOR 0 =0
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-AOXz
(Al3a) e

In between the extreme cases 0 < 0 << % » and O’rz’% the evaluation of
the integral becomes more complicated. One can however assume that (Al2)
represents the radiation field for all points in space where /50R >> 1, and

that (A13) combined with (Al3a) represents a surface vcave. This assumption

is strongly supported by the performed measurements.
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APPENDIX II

Basic Properties of Lowest Order TM- type Surface Waves on

Dielectric-clad Metallic Surfaces

Far away from the source, we can regard the surface waves as being
plane, and we can express the fields as follows:

In the dielectric: (0 > x> -d)

. 1 2
—1;—_-cos [;60(z+d) I e-l-XZJ e-J/ﬁor i
r

n

i

v =
(Al4) E!=-j

2 2
A 1e-1-x -j/8r11+x
, K v " sin[zgo(zi'd)le-l-XZ]e v

r

Above the dielectric: (z > 0)

K =1 ~2oX? - /éor“{uxz
H")'=——cos[_ﬂod e-1-X ]e
Nr

Y 2
-4 Xz =il r] HX
(Al15) EM=- 2z x sin[’> Y e-1-x° -{e 0 0

Af 2
[T —— + n
Ez ZU 1+X H‘j

where K/Nr is the surface current in the groundplane, and ZO= 'Jp.oleo .
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The power transported in the two media can be written:

In the dielectric:

KK* ZO {I;;Z{_%i_ sin'_Zﬁodh-l-xZ—].i
L |

P =
r € 2
4/50 €-1-X
In the air:
w{ 2 .
(Al6) P - KrK* z AMX G2 L&Od [ c-1-x° ] :

0 Zb X

The dimension of (Al6) is watt per unit width of guide.

The quantity X is obtained from:

(A17) eX = Ie-l-X2 tan[;éudle-l-xzj.

For small values of /50d'\/—£ X can be obtained from:

€-1
€

(A18) X= /bod

When this approximation 1s too crude, one has to use graphical

or numerical methods to solve (Al7) for X.
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